TECHNICAL INFORMATION 3600 DIESEL ENGINES

3606 • 3608 3612 • 3616

Contents

General Data 2
Combustion Air System 3
Loading on Turbocharger Inlet, Maximum
Exhaust Gas System 5
Loading on Turbocharger Outlet, Maximum
Fuel System 6
Set up Procedure for the Low-Pressure Fuel System
of 3600 and C280 Diesel Engines{1250} 7
Required Tooling7
Low-Pressure Fuel System Specifications
Inlet Fuel Pressure to the Transfer Pump
(set at rated speed and load)8
Primary and Secondary Fuel Filter Differential Pressure 8
Fuel System Pressure at the Pressure Regulator
(set at rated speed and load) 8
Return Fuel Line Restriction Pressure
Locations and Methods for Measuring the Pressures
of the Low-Pressure Fuel System9
Inlet Fuel Pressure to the Transfer Pump
(set at rated speed and load)10
Primary and Secondary Fuel Filter Differential Pressure10
Fuel System Pressure12
Return Fuel Line Restriction Pressure

Lubricating Oil System	14
Cooling Water System	17
Block Cooling	17
Sea Water Cooling	20
Starting Air System	21
Vane Starter Performance Curves	21
Air Start Tank Sizing	22
Starter Pressures and Flows	22
Power Supply Requirements	23
Additional Data	24
Torsional Vibration Analysis Information	24
EPG Applications	24
Torsional Calculation Values	24
Cyclic Irregularity	25
Empirical Damping	25
Flywheel Inertia Data	25
Torsional Vibration Data – Model 3606	26
Torsional Vibration Data – Model 3608	27
Torsional Vibration Data – Model 3612	28
Torsional Vibration Data – Model 3616	29
Crankshaft Cantilever Load	30
Free-Field Mechanical Noise	31
Free-Field Exhaust Noise	35
Reference Material	37

Foreword

This section of the Application and Installation Guide lists Technical Information for Cat[®] engines listed on the cover of this section. Additional engine systems, components and dynamics are addressed in other sections of this Application and Installation Guide.

Engine-specific information and data are available from a variety of sources. Refer to the Introduction section of this guide for additional references.

Systems and components described in this guide may not be available or applicable for every engine.

Information contained in this publication may be considered confidential. Discretion is recommended when distributing. Materials and specifications are subject to change without notice.

CAT, CATERPILLAR, their respective logos, "Caterpillar Yellow," the "Power Edge" trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

Technical Information – 3600 Diesel Engines

This guide provides technical data for the Cat 3600 engine family. At the time of publishing, this data is correct; updates will be included periodically and this section republished. Dealers may use the Technical Marketing Information system for the most current data.

SECTION CONTENTS

General Data 2

Combustion Air System 3

Loading on Turbocharger
 Inlet, Maximum

Exhaust Gas System 5

Loading on Turbocharger
 Outlet, Maximum

Fuel System 6

Set up Procedure for the Low-Pressure Fuel System of 3600 and C280 Diesel Engines{1250}.....7

- Required Tooling
- Low-Pressure Fuel System
 Specifications
- Locations and Methods for Measuring the Pressures of the Low-Pressure Fuel System
- Fuel System Pressure
- Return Fuel Line Restriction
 Pressure

Lubricating Oil System14

Cooling Water System......17

- Block Cooling
- AC/OC Cooling
- Sea Water Cooling

Starting Air System......21

- Turbine Starter Performance Curves
- Vane Starter Performance Curves
- Air Start Tank Sizing
- Starter Pressures and Flows

Power Supply Requirements.23

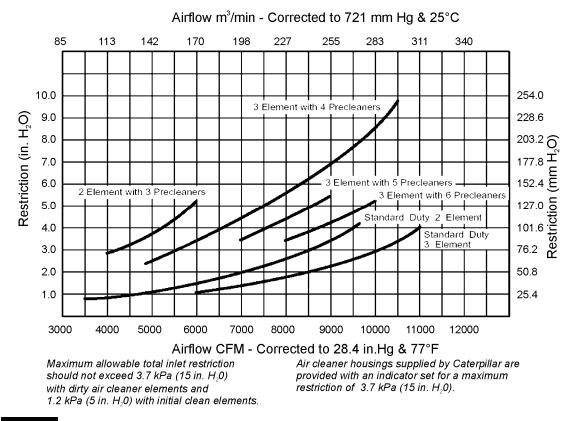
Additional Data.....24

- Torsional Vibration Analysis
 Information
- Torsional Calculation Values

Reference Material37

General Data

System Description Metric (English)	3606	3608	3612	3616
Cylinder Bore mm (in)	280 (11)	280 (11)	280 (11)	280 (11)
Stroke mm (in)	300 (11.8)	300 (11.8)	300 (11.8)	300 (11.8)
Displacement/Cylinder L (in ³)	18.5 (1127)	18.5 (1127)	18.5 (1127)	18.5 (1127)
Firing Pressure, maximum (Continuous/CSR) kPa (psi)	16,200 (2350)	16,200 (2350)	16,200 (2350)	16,200 (2350)
Firing Pressure, maximum (Prime Power/MCR) kPa (psi)	17,334 (2514)	17,334 (2514)	17,334 (2514)	17,334 (2514)
Firing Pressure, maximum (Standby) kPa (psi)	18,500 (2684)	18,500 (2684)	18,500 (2684)	18,500 (2684)
Rated Speed rpm	720 to 1000	720 to 1000	720 to 1000	720 to 1000
Mean Piston Speed m/s (ft/s)	7.2 – 10.0 (23.6 – 32.8)			
ldle speed (low) rpm	300 to 400	300 to 400	300 to 400	300 to 400
ldle speed (high) rpm	720 to 1000	720 to 1000	720 to 1000	720 to 1000
Firing Order – CCW	1-5-3-6-2-4	1-6-2-5-8-3-7-4	1-12-9-4-5-8-11-2-3-10-7-6	1-2-5-6-3-4-9-10 -15-16-11-12-13-14-7-8
Firing Order – CW	1-4-2-6-3-5	1-4-7-3-8-5-2-6	1-6-7-10-3-2-11-8-5-4-9-12	1-8-7-14-13-12-11-15 -16-10-9-4-3-6-5-2
Wet weight kg (lb)	16,804 (36,775)	20,221 (44,486)	26,848 (59,065)	32,104 (70,489)
Dry weight kg (lb)	15,680 (34,500)	19,000 (41,800)	25,140 (55,300)	29,950 (65,900)
Center of Gravity Distance from Cylinder Block Rear Face mm (in)	1290 (50.8)	1700 (66.9)	1411 (55.6)	1858 (73.1)
Vertical Distance Above Crankshaft Centerline mm (in)	350 (13.8)	350 (13.8)	380 (14.9)	380 (14.9)
Transverse Distance from Crankshaft Centerline	On Crank Center	On Crank Center	On Crank Center	On Crank Center
NOTE: Center of gravity locations	apply to dry runable	engines.		

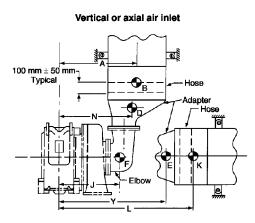

Table 1

Combustion Air System

System Description Metric (English)	3606	3608	3612	3616
Air Temperature @ Air Cleaner, maximum °C (°F) @ 150 masl	40 (104)	40 (104)	40 (104))	40 (104)
Air Temperature After Aftercooler (Inlet Manifold), HPAC (50°C water) alarm °C (°F)	78 (172)	78 (172)	78 (172)	78 (172)
Air Temperature After Aftercooler (Inlet Manifold), HPAC (32°C water) alarm °C (°F)	61 (142)	61 (142)	61 (142)	61 (142)
Air Inlet Restriction, new/maximum mm H2O (in H2O)	125/380 (5/15)	125/380 (5/15)	125/380 (5/15)	125/380 (5/15)
Aftercooler Pressure Difference @ 100% Load, clean state kPa (psi)	3.4 (0.5)	3.4 (0.5)	3.4 (0.5)	3.4 (0.5)

Table 2

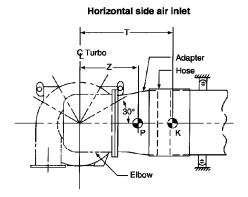
Air Cleaner Performance Curves



		Clean Element Weight	Dirt Retention Capacity		Weight Housing
Duty	Quantity Elements	(Each)	(Each)	Clean	Dirty
Low Volume	2	6.4 (14)	29 (64)	252 (554)	290 (638)
High Volume	3	6.4 (14)	29 (64)	520 (1144)	584 (1285)

Loading on Turbocharger Inlet, Maximum

Maximum Loads for ABB VTC Turbocharger Intake



D, F & E = Adapter Weight B & K = 1/2 Hose Weight	
Moment (Vertical Inlet):	Allowable
$M_V = JF + ND + AB$	Max Moment = 30 mkg
Moment (Axial Inlet):	5
$M_A = YE + LK$	

With Caterpillar Supplied Hardware

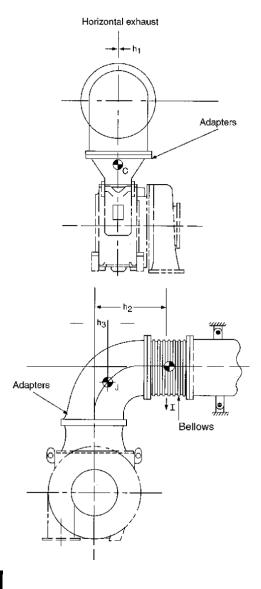
J = 548 mm	N = 625	A = 700 mm
Y = 705 mm	L = 945 mm	
D = 13 kg	E = 14 kg	F = 16 kg
B = <u>3 kg</u>	K = <u>3 kg</u>	-
2	2	

 $\begin{array}{l} M_V = 0.548~(16) + 0.625~(13) + 0.700~(1.5)\\ M_V = 18~mkg~which~is~less~than~30~mkg/OK\\ M_A = 0.705~(14) + 0.945~(1.5) = 11~mkg~which~is~less~than~30~mkg/OK \end{array}$

P = Adapter WeightK = 1/2 Hose Weight MS = ZP + TK \leq 7 mkg

With Caterpillar Hardware P = 13 kg K = $\frac{3 \text{ kg}}{2}$

 $\begin{array}{ll} Z = 420 \mbox{ mm} & T = 500 \mbox{ mm} \\ M_S = 0.420 \ (13) + 0.500 \ (3/2) = 6.21 < 7/OK \\ Figure \ 12. \end{array}$


Exhaust Gas System

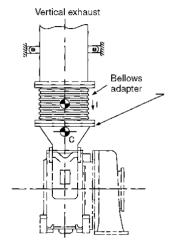

System Description Metric (English)	3606	3608	3612	3616
Exhaust System Backpressure, maximum mm H2O (in H2O)	254 (10)	254 (10)	254 (10)	254 (10)
Loading on Turbocharger Outlet, Maximum	For 3600/G3600 series engines, the Caterpillar supplied bellows and adapter, or elbow and bellows options, account for the maximum allowable loading on the turbocharger. All other external piping must be self-supporting.			

Table 4

Loading on Turbocharger Outlet, Maximum

Vertical and Horizontal Exhaust

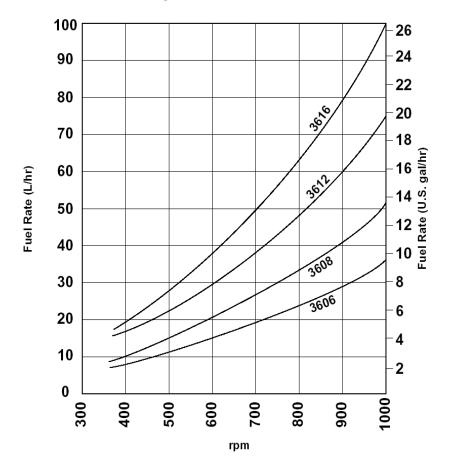


Figure 3

Fuel System

System Description Metric (English)	3606	3608	3612	3616
Pump Suction Restriction, maximum kPa (psi)	-20 (-2.9)	-20 (-2.9)	- 20 (- 2.9)	- 20 (-2.9)
Return Line Backpressure, maximum kPa (psi)	350 (51)	350 (51)	350 (51)	350 (51)
Manifold Pressure @ 100% Load kPa (psi) MUI	550 +/- 50 (80 +/- 7)			
Manifold Pressure @ 100% Load kPa (psi) EUI	820 +/- 20 (119 +/- 3)			
Emergency Fuel Pump Flow Rate Lpm (gpm)	42 (11)	42 (11)	79 (21)	79 (21)
Fuel Cooler Inlet Temperature Limit °C (°F)	66 (150)	66 (150)	66 (150)	66 (150)

Table 5

Engine Idle Fuel Rates

Figure 4

Set up Procedure for the Low-Pressure Fuel System of 3600 and C280 Diesel Engines{1250}

SMCS - 1250-587

```
Engine:
3606 (S/N: 8RB1-UP)
3608 (S/N: 6MC1-UP; 1ZD1-UP; 5PG1-UP; 8LL1-UP; 7WR1-UP)
3612 (S/N: NZA1-UP; 9RC1-UP; 9FR1-UP)
3616 (S/N: 1PD1-UP; RMN1-UP; 1FN1-UP)
C280-16 (S/N: NKB1-UP; TDX1-UP)
```

```
Marine Engine:
C280-12 (S/N: TSJ1-UP; RDW1-UP)
C280-6 (S/N: SCB1-UP; LDL1-UP)
C280-8 (S/N: PKA1-UP; NDT1-UP)
```

This Special Instruction provides information for proper set-up of the low-pressure fuel system. A low-pressure fuel system that has been set up incorrectly can allow air in the system. Air in the system can cause hard starting, erratic engine operation, and can also erode the unit injectors. This procedure can be used on new and existing installations to check pressure and must be done with clean primary and secondary fuel filters.

nequired rooming		
Tooling Part Number	Description	Quantity
6V-7830	Pressure Gauge	1
214-7568	O-Ring Seal	3
6V-3965	Fitting	2
8C-8456	Сар	3

Required Tooling

Low-Pressure Fuel System Specifications

NOTICE

If multiple engines are using the same fuel manifold or day tank, operate and load all engines to set the system fuel pressure.

NOTICE

Make sure that the return is routed to the tank and not routed to the engine inlet.

NOTICE

If rated speed and load cannot be achieved, use Tables 7 and 8 to determine the pressure to set at the regulator. This setting is based on load and zero restriction to the transfer pump.

Inlet Fuel Pressure to the Transfer Pump (set at rated speed and load)

- No less than -20 kPa (-3 psi) and no greater than 100 kPa (14.5 psi)
- 50 kPa (7.25 psi) if a priming pump is used

Primary and Secondary Fuel Filter Differential Pressure

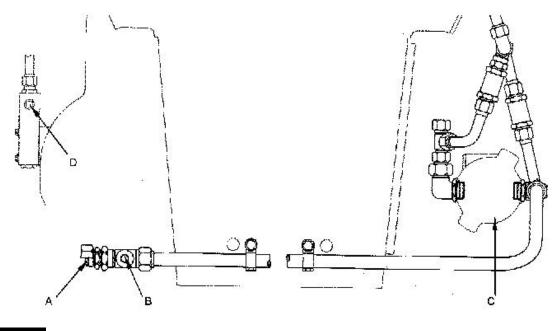
• 75 kPa (10.8 psi) maximum

Fuel System Pressure at the Pressure Regulator (set at rated speed and load)

- MUI: 550 ± 50 kPa (80 ± 7 psi)
- EUI: 820 ± 20 kPa (119 ± 3 psi)

Return Fuel Line Restriction Pressure

• Do not exceed 350 kPa (51 psi) at rated speed and load


Mechanical Unit Injector (MUI)	With Fuel Transfer Pump Inlet Pressure a		
Percent of Load	kPa	PSI	
0	879	127	
25	864	125	
50	850	123	
75	835	121	
100	820	119	

Electronic Unit Injector (EUI)	With Fuel Transfer Pump Inlet Pressure at 0 kPa		
Percent of Load	kPa	PSI	
0	879	127	
25	864	125	
50	850	123	
75	835	121	
100	820	119	

Table 8

Locations and Methods for Measuring the Pressures of the Low-Pressure Fuel System

Figure 5

Front View of a typical fuel inlet lines group

(A) Fuel inlet port

(B) Test port for the fuel supply pressure

- (C) Fuel transfer pump
- (D) Test port location for system pressure

Inlet Fuel Pressure to the Transfer Pump (set at rated speed and load)

1. Install a 6V-3965 Fitting into Port (B) using a 214-7568 O-Ring Seal

NOTE: The inlet pressure to the fuel transfer pump can affect overall system pressure. All filters or water separators before the transfer pump must be new and clean prior to setting the system pressure at the fuel pressure regulator.

2. Connect the 6V-7830 Pressure Gauge to the fitting installed in the previous step.

3. Set the engine to rated speed and load. Record the fuel pressure, and refer to the specifications above.

Primary and Secondary Fuel Filter Differential Pressure

Primary and secondary fuel filter differential pressures are determined by the pressures from both sides of the fuel filters. This measurement will monitor fuel filter cleanliness and determine when the fuel filters require changing.

Filter replacement will vary depending on fuel quality. Fuel quality can change with each shipment of fuel so monitoring the filter differential is necessary to obtain maximum filter life.

Too high of a differential can cause air bubbles in the fuel system and if not corrected will lead to poor performance and injector damage. After the measurements are taken, refer to the specification above for the maximum allowable differential pressure.

Primary filters or water separators should be properly sized to meet the flow requirements of the engine or engines as well as fuel being returned to the tank. Reference Table 9 for the flow requirements.

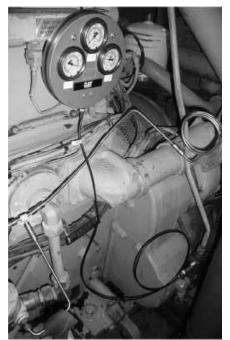

	3600 Engine Fuel Flow						
Engine Model	Rated Speed (rpm)	Fuel Flow to Engine	Fuel Flow from Engine	Fuel Heat Rejection			
	1000	41.5 L/min (11 US gpm)	32.4 L/min (8.6 US gpm)	12.5 kW (712 Btu/min)			
3606	900	38 L/min (10 US gpm)	30.0 L/min (7.9 US gpm)	11.0 kW (626 Btu/min)			
3000	750	31.5 L/min (8.3 US gpm)	24.5 L/min (6.5 US gpm)	10.5 kW (598 Btu/min)			
	720	30 L/min (7.9 US gpm)	23.6 L/min (6.2 US gpm)	10.0 kW (567 Btu/min)			
	1000	41.5 L/min (11 US gpm)	30.0 L/min (7.9 US gpm)	16.7 kW (951 Btu/min)			
3608	900	38 L/min (10 US gpm)	27.6 L/min (7.3 US gpm)	14.6 kW (831 Btu/min)			
5000	750	31.5 L/min (8.3 US gpm)	22.6 L/min (6.0 US gpm)	14.0 kW (797 Btu/min)			
	720	30 L/min (7.9 US gpm)	21.4 L/min (5.6 US gpm)	13.3 kW (757 Btu/min)			
	1000	78.5 L/min (20.7 US gpm)	60.1 L/min (15.9 US gpm)	25.0 kW (1423 Btu/min)			
3612	900	72 L/min (19 US gpm)	55.4 L/min (14.6 US gpm)	22.0 kW (1252 Btu/min)			
3012	750	61.2 L/min (16.2 US gpm)	47.3 L/min (12.5 US gpm)	20.2 kW (1150 Btu/min)			
	720	58.1 L/min (15.3 US gpm)	45.2 L/min (11.9 US gpm)	19.1 kW (1087 Btu/min)			
	1000	78.5 L/min (20.7 US gpm)	55.2 L/min (14.6 US gpm)	33.3 kW (1895 Btu/min)			
3616	900	72 L/min (19 US gpm)	51.1 L/min (13.5 US gpm)	29.3 kW (1668 Btu/min)			
5010	750	61.2 L/min (16.2 US gpm)	43.2 L/min (11.4 US gpm)	26.9 kW (1531 Btu/min)			
	720	58.1 L/min (15.3 US gpm)	41.2 L/min (10.9 US gpm)	25.4 kW (1446 Btu/min)			

Table 9

Fuel System Pressure

1. Install a 6V-3965 Fitting into Port (D) using a 214-7568 O-Ring Seal

NOTE: The inlet pressure to the fuel transfer pump can affect overall system pressure. All filters or water separators before the transfer pump must be new and clean prior to setting the system pressure at the fuel pressure regulator.

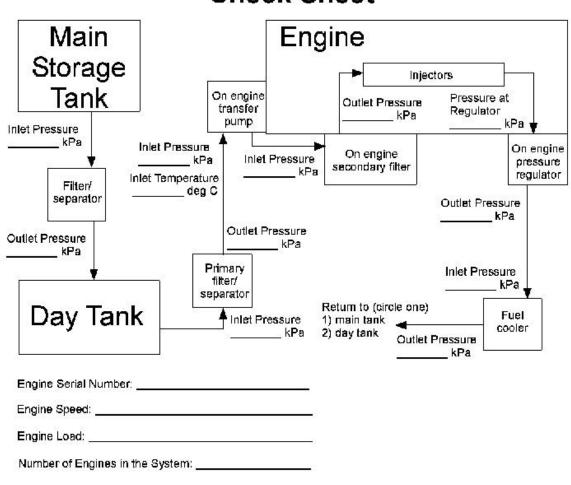
6V-7830 Pressure Gauge installed on the engine

Figure 6

2.Connect the 6V-7830 Pressure Gauge to the fitting installed in the previous step.

3. Set the engine to rated speed and load. Record the fuel pressure, and refer to the specification above.

NOTE: If multiple engines are using the same fuel manifold or day tank, operate and load all engines to set the system fuel pressure. Multiple engines operating on the same fuel tank or manifold will affect the pressure depending on the number of engines running and the fuel demand.


NOTE: If rated speed and load cannot be achieved, use Tables 7 and 7 to determine the pressure to set at the regulator. This setting is based on load and zero restriction to the transfer pump.

4. With the 6V-7830 Pressure Gauge connected to the fuel pressure regulator, adjust the regulator until the desired pressure is obtained.

Return Fuel Line Restriction Pressure

This pressure is taken after the fuel pressure regulator in the customer supplied piping. Measure this pressure directly after the fuel pressure regulator, before any other fuel system components.

NOTE: All pressures can be documented on the attached Check Sheet (Figure 7) for future reference

Check Sheet

Figure 7

Lubricating Oil System

System Description Metric (English)	3606	3608	3612	3616
Manifold Pressure, nominal kPa (psi)	380 (55)	380 (55)	380 (55)	380 (55)
Manifold Pressure, alarm (650 – 1000 rpm) kPa (psi)	320 (46)	320 (46)	320 (46)	320 (46)
Manifold Pressure, alarm (O – 650 rpm) kPa (psi)	120 (17)	120 (17)	120 (17)	120 (17)
Manifold Pressure, stop (650 – 1000 rpm) kPa (psi)	260 (38)	260 (38)	260 (38)	260 (38)
Manifold Pressure, stop (O – 650 rpm) kPa (psi)	105 (15)	105 (15)	105 (15)	105 (15)
Manifold Temperature, alarm °C (°F)	92 (198)	92 (198)	92 (198)	92 (198)
Manifold Temperature, stop °C (°F)	98 (208)	98 (208)	98 (208)	98 (208)
Manifold Temperature, nominal °C (°F)	85 (185)	85 (185)	85 (185)	85 (185)
Prelube Pump Capacity, intermittent (pneumatic) Lpm (gpm)	76 (20)	76 (20)	76 (20)	76 (20)
Prelube Pump Capacity, intermittent (electric) Lpm (gpm)	50 – 65 (13 – 17)	50 – 65 (13 – 17)	50 – 65 (13 – 17)	50 – 65 (13 – 17)
Prelube Pump Capacity, continuous Lpm (gpm)	23 (6)	23 (6)	23 (6)	23 (6)
BSOC @ 100% Load, typical g/bkW-hr (lb/bhp-hr)	0.7 (0.0012)	0.7 (0.0012)	0.7 (0.0012)	0.7 (0.0012)
Lube Oil Filter Differential Pressure, maximum kPa (psi)	104 (15)	104 (15)	104 (15)	104 (15)
Lube Oil Flow Lpm (gpm)	577 (152)	728 (192)	868 (229)	1117 (295)
Emergency Oil Pump Flow Rate Lpm (gpm)	750 (198)	770 (203)	890 (235)	1200 (317)

Table 10

	Lube Oil Capacities and Oil Change Intervals for 3600 (Distillate Fuel)								
Engine	Industrial Engines and Generator Set Engines			Engines gree Tilt)	Engines with Shallow Oil Pan for Restricted Clearance Applications				
	Lube Oil Capacity ⁽¹⁾ L (US gal)	Oil Change Interval ²⁾ Service Hours	Lube Oil Capacity ⁽¹⁾ L (US gal)	Oil Change Interval ²⁾ Service Hours	Lube Oil Capacity ⁽¹⁾ L (US gal)	<i>Oil Change Interval²⁾ Service Hours</i>			
3606	830 (229)	1400	731 (190)	1000	784 (207)	1250			
3608	1112 (289)	1350	795 (207)	900					
3612	1302 (339)	1000	943 (245)	800	946 (250)	800			
3616	1677 (443)	1000	1051(284)	600					

⁽¹⁾ The capacity includes the oil sump plus oil filters that are installed at the factory. Engines with auxiliary oil filters will require additional oil. The capacity is approximate. The actual capacity may vary by 5 percent. Caterpillar recommends using the capacity that is listed and then adjusting the oil level according to the oil level gauge (dipstick).

⁽²⁾ Use this oil change interval in the absence of oil analysis.

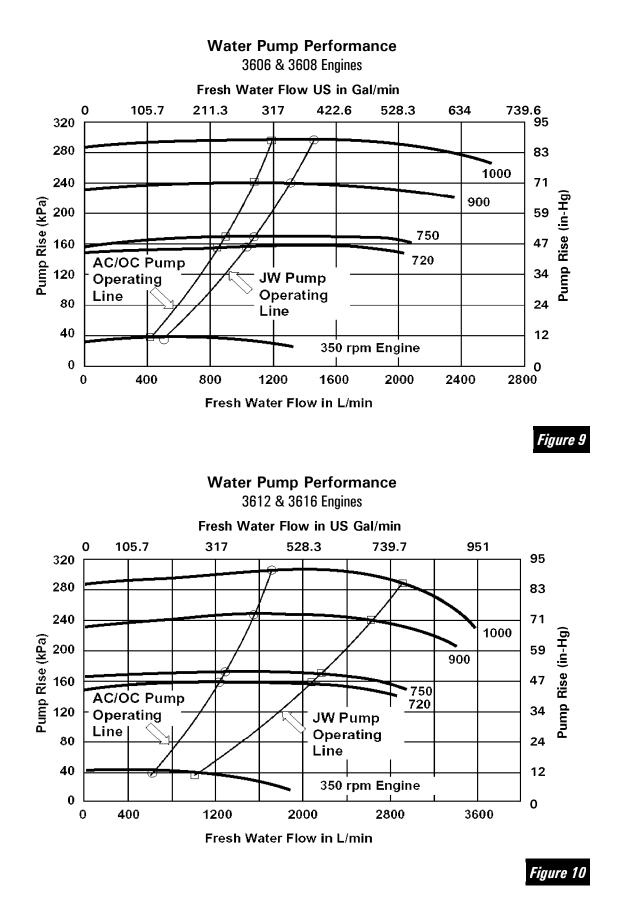
Table 11

Continuous Tilt Angle Capability Marine Marine Propulsion Auxiliary									
Tilt						&			
Criteria						st			
	(8	any	con	nbin	atio	n)	(any combination)		
Installation Angle /									
	Rear Down Level (Degrees) Installation								
Engine Model	0	1	2	3	4	5			
3606	Х	Х	Х	Х	Х	Х	Х		
3608	Х	Х	Х	S	S	S	Х		
3612	Х	Х	Х	Х	Х	Х	Х		
(Standard Pan)									
3612	Υ	Υ	Υ	Υ	Υ	D	Y		
(Shallow Pan)									
3616	Х	Х	Х	Х	S	S	Х		
X = Standard Sump, capable of meeting the indicated tilt criteria.									
Y = Optional Sump for 3612, capable of meeting the indicated tilt criteria.									
S = Requires incre	ase	ed d	ept	h oi	l su	Imp	(special order)		
	D = Requires Dry Sump option to achieve the indicated tilt criteria.								

Tilt Angle Capability

NOTE: If the sump engine is installed at $>0^{\circ}$ tilt, it will reduce oil capacity and reduce the oil change interval. Consult Caterpillar for specific details.

Cooling Water System


Block Cooling

System Description Metric (English)	3606	3608	3612	3616
Inlet Temperature, nominal °C (°F)	90 (194)	90 (194)	90 (194)	90 (194)
Inlet Temperature, maximum °C (°F)	95 (203)	95 (203)	95 (203)	95 (203)
Inlet Temperature, minimum °C (°F)	83 (181)	83 (181)	83 (181)	83 (181)
Outlet Temp Before Regulator, maximum °C (°F)	99 (210)	99 (210)	99 (210)	99 (210)
Outlet Temperature, alarm °C (°F)	103 (217)	103 (217)	103 (217)	103 (217)
Outlet Temperature, stop °C (°F)	109 (228)	109 (228)	109 (228)	109 (228)
Minimum System Pressure, alarm kPa (psi)	70 (10)	70 (10)	70 (10)	70 (10)
Pump Inlet Pressure, minimum kPa (psi)	30 (4.3)	30 (4.3)	30 (4.3)	30 (4.3)

Table 12

Water Pump Capacity & Water Pump Rise									
		AC/OC Pun	р <i>@ 32°С</i> -		JW Pump @ 90°C				
-	Fl	low	R	ise	Flo	w	Rise		
-	L/min	gpm	kPa	psi	L/min	gpm	kPa	psi	
3606/3608									
1000 rpm	1200	317	295	42.8	1460	385	295	42.8	
900 rpm	1080	285	240	34.8	1315	347	240	34.8	
750 rpm	900	238	170	24.7	1095	289	170	24.7	
720 rpm	860	227	160	23.2	1050	277	160	23.2	
3612/3616					I.				
1000 rpm	1730	457	305	44.3	2920	771	290	42.1	
900 rpm	1560	412	245	35.6	2630	694	240	34.8	
750 rpm	1300	343	170	24.7	2190	578	170	24.7	
720 rpm	1250	330	160	23.2	2100	554	155	22.5	

External Cooling System Pressure Drop

3606 and 3608 Combined Circuit

External Circuit Resistance, kPa (psi)

PINE	Engine Speed rpm	Low Temperature Circuit ∆ P (P1-P2)	High Temperature Circuit ∆ P (P3-P4)
	1000	91 (13)	—
	900	71 (10)	
	750	45 (6.5)	_
A 8	720	40 (5.8)	—
P0 - 0	Tolerance:	± 10%	

3606 and 3608 Separate Circuit

	1000	104 (15)	99 (14)
A CONTRACTOR	900	84(12)	77 (11)
	750	58 (8)	50 (7)
P4 D	720	52 (7.5)	44 (6)
	Tolerance:	± 10%	± 10%

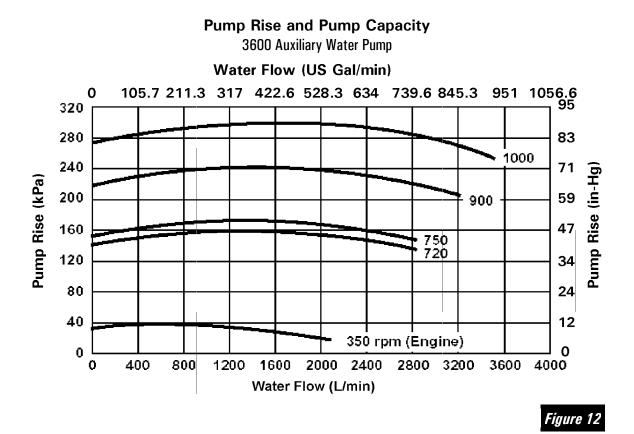
3612 and 3616 Combined Circuit

\sim	1000	05 (10)	
	1000	85 (12)	—
	900	66 (9.6)	—
	750	42 (6)	—
	720	38 (5.5)	—
	Tolerance:	± 10%	—

3612 and 3616 Separate Circuit

	1000 900	85 (12) 66 (9.6)	103 (15) 81 (12)
P1	750	42 (6)	52 (7.5)
	720	38 (5.5)	47 (7)
	Tolerance:	± 10%	± 10%

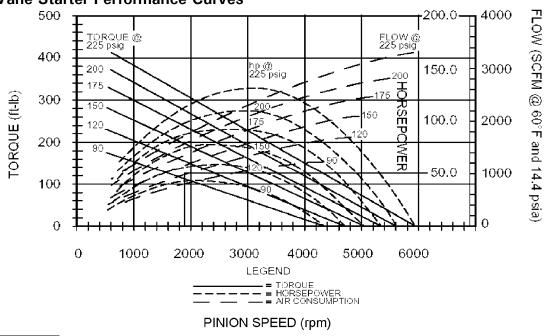
Figure 11


NOTE: The above external resistance settings must be made with blockedopen regulators to assure full heat exchanger flow. Refer to Engine Data Sheet Cooling System Field Test.

NOTE: A lockable plug valve is preferred for setting external resistance. A plate type orifice or other adjustable valve may be used, but it must not include an elastomer seal element.

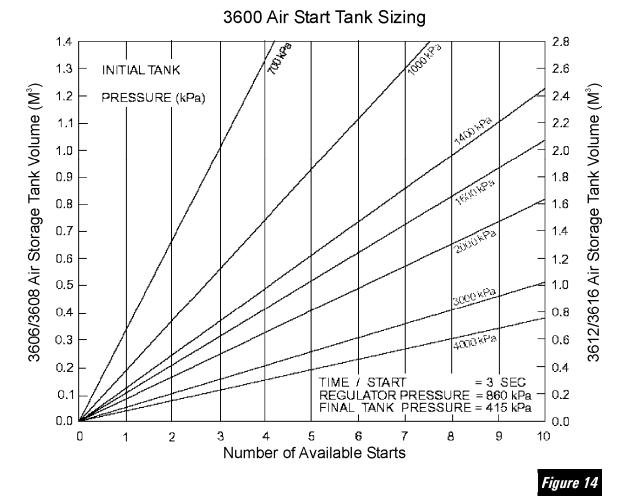
Table 14

Sea Water Cooling


System Description Metric (English)	3606	3608	3612	3616
Minimum System Pressure, alarm kPa (psi)	70 (10)	70 (10)	70 (10)	70 (10)

Starting Air System

System Description Metric (English)	3606	3608	3612	3616
Air Pressure, nominal kPa (psi)	1225 (175)	1225 (175)	1225 (175)	1225 (175)
Air Pressure, minimum kPa (psi)	620 (90)	620 (90)	620 (90)	620 (90)
Air Pressure, maximum (Vane Starters) kPa (psi)	1575 (225)	1575 (225)	1575 (225)	1575 (225)
Low Air Pressure, alarm kPa (psi)	750 (109)	750 (109)	750 (109)	750 (109)


Table 15

Vane Starter Performance Curves

Figure 13

Air Start Tank Sizing

Starter Pressures and Flows

Static Regulator Outlet Pressure kPag (psig)	Estimated Dynamic Pressure at the Starter kPag (psig)	Air Flow Capacity Per Starter L/sec (SCFM)
862 (125	620 – 655 (90 – 95)	400 (720)
1550 (225)	1172 (170)	615 (1300)

Table 16

Power Supply Requirements

System Description Metric (English)	3606	3608	3612	3616	
Jacket Water Heater (Optional) kW (Btu/min)	18 (1024)	18 (1024)	30 (1706)	30 (1706)	
Lube Oil Heater (Optional) kW (Btu/min)	9 (512)	9 (512)	9 (512)	9 (512)	
Combination Jacket Water/Lube Oil Heater (Optional) kW (Btu/min)	18/9 (1024/512)	18/9 (1024/512)	30/9 (1706/512)	30/9 (1706/512)	

Additional Data

Torsional Vibration Analysis Information

EPG Applications

	Rated	Engines				
Application	Speed (rpm)	3606	3608	3612	3616	
Two bearing	720	Α	В	E	Н	
Two bearing	750	А	В	E	Н	
Two bearing	900	Α	C	F	I	
Two bearing	1000	Α	C	F		

Table 18

Table 19

Damper Data	A	B	C	D	E	F	G	H	1	J
Lumped mass J*	6.56	6.56	29.29	46.15	22.8 2	26.29	22.82	22.82	6.56	22.82
Separated Damper	Separated Damper Data									
Damper Housing J*	3.64	3.64	11.69	17.25	8.37	11.69	8.37	8.37	3.64	8.37
Damper Flywheel J*	5.84	5.84	29.2	57.80	28.9 0	29.20	28.90	28.90	5.84	28.90
Damper Constant C	1243	1000	14123	22500	5100	7000	6600	7500	1500	8100
Damper Rigidity K	0.73	0.41	4.52	6.50	1.80	2.85	1.60	1.48	0.60	1.35

* Add to Front of Crank J (N•m sec) K (N•m x 10⁶/radian) C (N•m sec/radian)

Torsional Calculation Values

- Reciprocating Mass per Cylinder = 68.36 kg (150.71 lb)
- Rotating Mass per Cylinder = 39.61 kg (87.33 lb)
- Connecting Rod Length (between pin centers) = 600 mm (23.62 in)

Cyclic Irregularity

Calculated Cyclic Irregularities							
	Speed	d-rpm					
Engine	900	1000					
3606	1:152	1:188					
3608	1:145	1:179					
3612	1:254	1:314					
3616	1:450	1:556					

Table 20

Empirical Damping

Engine	N∙m sec per radian
3606	384
3608	441
3612	531
3616	531

Table 21

NOTE: The damping values for the inline engines are for each cylinder; the 3612 and 3616 damping values are for a pair of cylinders since the vee engines have two cylinders on each crankshaft throw.

Flywheel Inertia Data

Most marine propulsion applications use the high inertia flywheel to allow the use of a single element torsional coupling. A lighter weight standard flywheel is also available. Inertia valves include the ring gear and should be added to the rear crank inertia.

- Standard Flywheel Inertia = 74.90 N•m sec²
- High Inertia Flywheel; = 140.29 N•m sec²

For Harmonic Component of Tangential Pressure, see TD3310 at the bottom of each TVA table.

Degrees to Firing After #1 Fires						
CW (Reverse) Rotation	CCW (Standard) Rotation	Engine	7	К	Minimum Diameter	
		Front Crank	5.4652			
				72.53	216	
0	0	Cylinder #1	9.743			
				42.85	216	
240	480	Cylinder #2	8.685			
				42.85	216	
480	240	Cylinder #3	8.685			
				42.85	216	
120	600	Cylinder #4	8.685			
				42.85	216	
600	120	Cylinder #5	8.685			
			_	42.85	216	
360	360	Cylinder #6	9.743			
			-	72.53	216	
		Rear Crank	5.8060			

 $J = N \bullet m sec^2$

 $K = N \bullet m \times 10^6 / radian$

 $C = N \bullet m \text{ sec/radian}$

Diameter in millimeters

Total Inertia without Flywheel and Damper: $J = 65.50 \text{ N} \cdot \text{m sec}^2$

For Harmonic Component of Tangential Pressure, see TD3310 at the bottom of each TVA table.

Front Driven	Front Driven Equipment									
		3608 M	lass Elastic Syste	em						
	Firing After Fires									
CW (Reverse) Rotation	CCW (Standard) Rotation	Engine	J	K	Minimum Diameter					
		Front Crank	5.6452							
	-			69.28	216					
0	0	Cylinder #1	9.434							
	-			41.50	216					
540	180	Cylinder #2	8.997							
	-			41.50	216					
270	450	Cylinder #3	8.997							
	-		_	41.50	216					
90	630	Cylinder #4	8.997							
	_		_	41.50	216					
450	270	Cylinder #5	8.997							
	-		_	41.50	216					
630	90	Cylinder #6	8.997							
	_		_	41.50	216					
180	540	Cylinder #7	8.997							
	-			41.50	216					
360	360	Cylinder #8	9.434							
	_			69.28	216					
		Rear Crank	5.9203							

 $J = N \bullet m sec^2$

 $K = N \bullet m \times 10^6 / radian$

 $C = N \bullet m \text{ sec/radian}$

Diameter in millimeters

Total Inertia without Flywheel and Damper: J = 84.42 N•m sec²

For Harmonic component of Tangential Pressure, see TD3310 at the bottom of each TVA table.

Degrees to Firing After #1 Fires		Engine	J	K	Minimum		
CW (Rei Rota		CCW (St Rota	tandard) htion	Liigine	5		Diameter
				Front Crank	5.6452		
					4	67.79	216
1R-0	1L-290	1R-0	1L-410	Cylinder #1	17.00		
					4	40.11	216
2R-240	2L-530	2R-480	2L-170	Cylinder #2	16.31		
					4	40.11	216
3R-480	3L-50	3R-240	3L-650	Cylinder #3	16.31		
					-	40.11	216
4R120	4L-410	4R-600	4L-290	Cylinder #4	16.31		
					-	40.11	216
5R-600	5L-170	5R-120	5L-530	Cylinder #5	16.31		
					-	40.11	216
6R-310	6L-650	6R-360	6L-50	Cylinder #6	17.00		
					4	67.79	216
				Rear Crank	5.8263		

 $J = N \bullet m sec^2$

 $K = N \bullet m \times 10^6 / radian$

 $C = N \bullet m \text{ sec/radian}$

Diameter in millimeters

Total Inertia without Flywheel and Damper: J = $110.71 \text{ N} \cdot \text{m sec}^2$

For Harmonic component of Tangential Pressure, see TD3310 at the bottom of each TVA table.

Table 24

	Degrees to Firing After #1 Fires			Fasias		ĸ	Minimum	
			CW (Reversed)		- Engine	J	Λ	Diameter
Rota	ntion	Rota	ation	5 10 1	5.0450			
				Front Crank	5.6452			
					1	67.79	216	
1R-0	1L-680	1R-0	1L-50	Cylinder #1	17.17			
						40.11	216	
2R-540	2L-500	2R-180	2L-230	Cylinder #2	16.50			
						40.11	216	
3R-630	3L-590	3R-90	3L-140	Cylinder #3	16.50			
						40.11	216	
4R-90	4L-50	4R-630	4L-680	Cylinder #4	16.50			
						40.11	216	
5R-450	5L-410	5R-270	5L-320	Cylinder #5	16.50			
	020	511-270	51-520	-,		40.11	216	
6R-270	6L-230	6R-450	6L-500	Cylinder #6	16.50	10.11	210	
011-270	01 200	01-400	01-200		10.50	40.11	216	
70 100	7L-140			Culindan #7	10 50	40.11	210	
7R-180	/L-14U	7R-540	7L-590	Cylinder #7	16.50		212	
						40.11	216	
8R-360	8L-320	8R360	8L-410	Cylinder #8	17.17			
						67.79	216	
				Rear Crank	5.8263			

 $J = N \bullet m sec^2$

 $K = N \bullet m \times 10^6 / radian$

 $C = N \bullet m sec/radian$

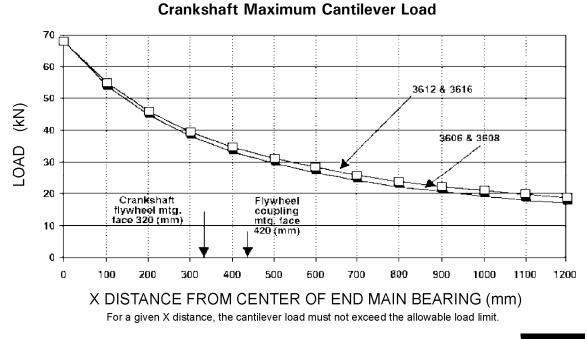
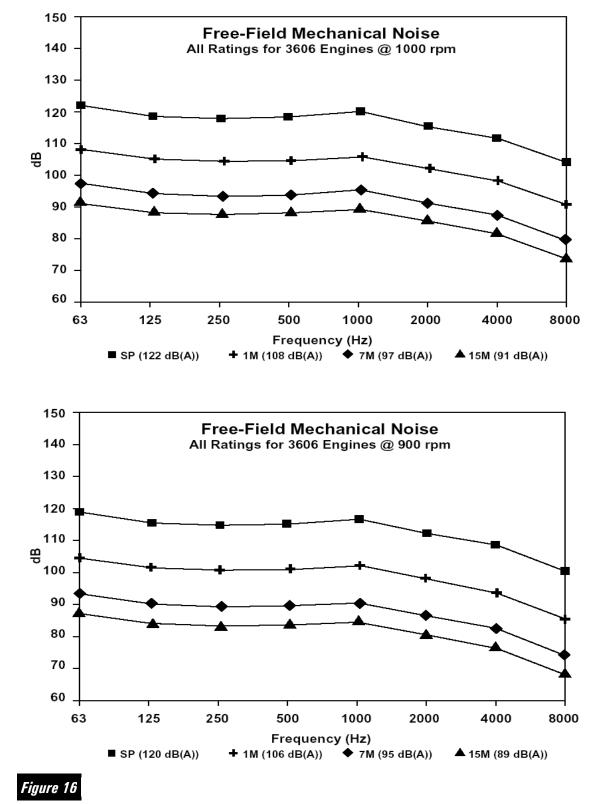
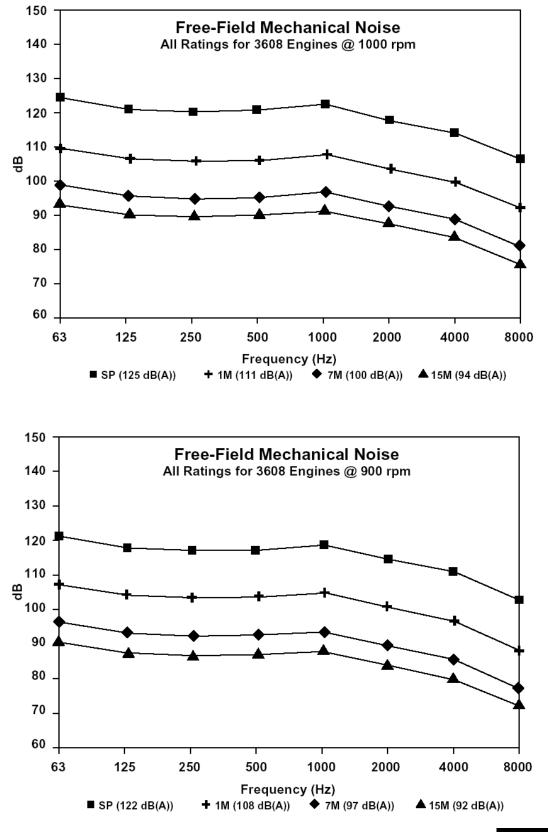
Diameter in millimeters

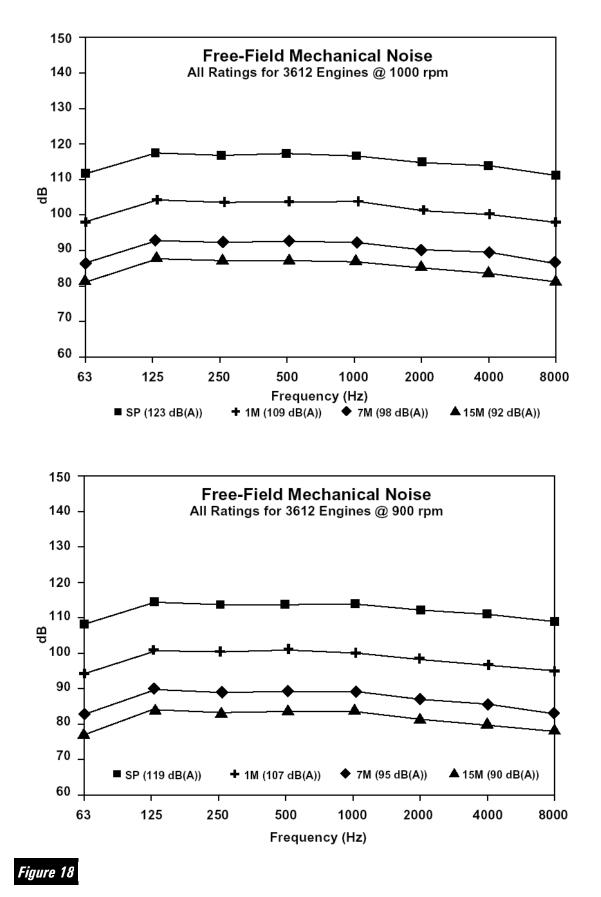
Total Inertia without Flywheel and Damper: J = 144.81 N•m sec²

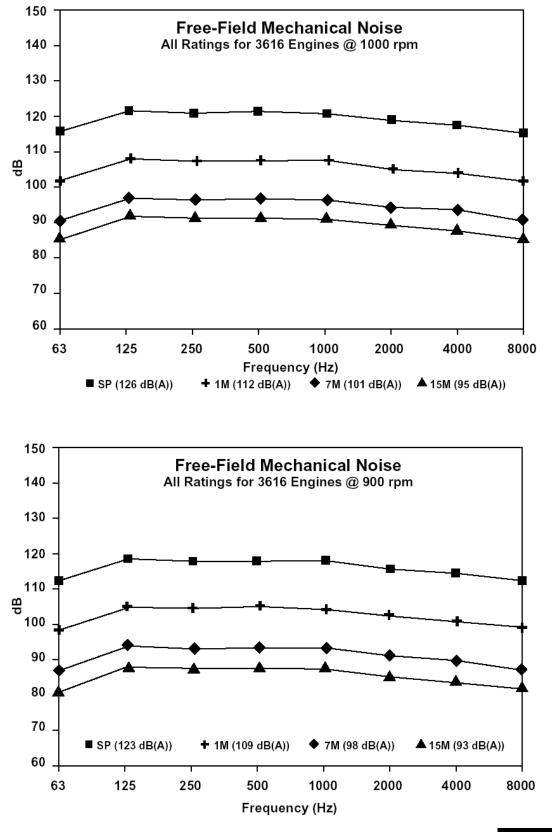
For Harmonic component of Tangential Pressure, see TD3310 at the bottom of each TVA table.

Table 25

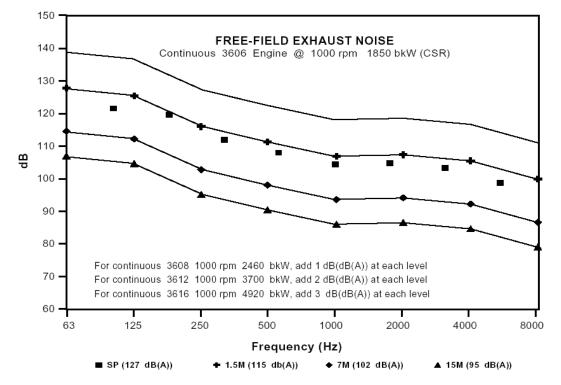
Crankshaft Cantilever Load

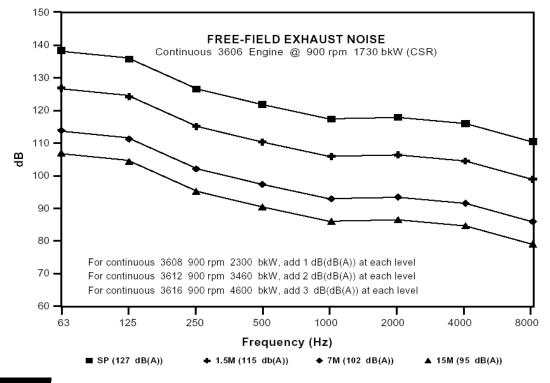




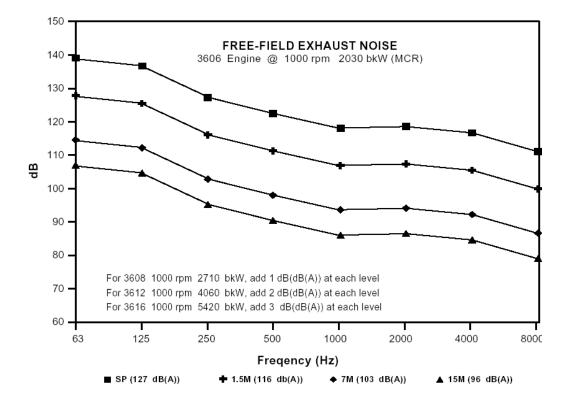

Figure 15



Free-Field Mechanical Noise


Figure 17




Figure 19

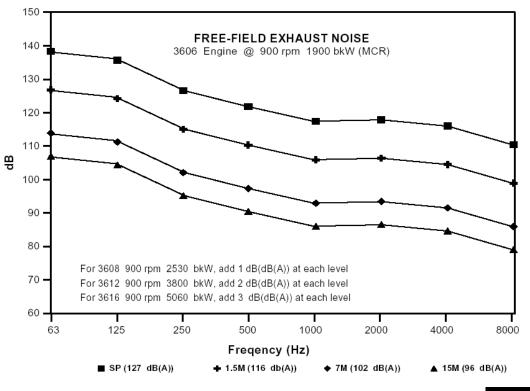

Free-Field Exhaust Noise

Figure 20

Reference Material

The following information is provided as additional reference to subjects discussed in this guide.

LEBW4976

Application and Installation Guide, "Diesel Fuels and Diesel Fuel Systems"

LEBW4985

Application and Installation Guide, "Diesel Engine Commissioning -3600/C280"

SEBU6965

Operation and Maintenance Manual "3600 Distillate Fuel Engines"

SEBU7003

Operation and Maintenance Manual, "Cat 3600 Series and C280 Series Diesel Engine Fluids Recommendations"

SENR3599

Systems Operation/ Testing and Adjusting, "3606 and 3608 Engines"

SENR3593

Systems Operation/ Testing and Adjusting, "3612 and 3616 Engines"

RENR5083

Systems Operation/ Testing and Adjusting, "C280 Marine Engines"

SENR3598

Specifications, "3606 and 3608 Engines"

SENR3592

Specifications, "3612 and 3616 Engines"

RENR5082

Specifications, "C280 Marine Engines"

[©]2014 Caterpillar All rights reserved.

SEBD9307

Engine News, "New Specification For The Minimum Fuel Pressure At The Inlet To The Fuel Transfer Pump"

Printed in U.S.A. All rights reserved.

©2014 Caterpillar